
846. The Reaction of Ethyl 2-Oxocyclopentanecarboxylate with Aryl-The Preparation of 2,3-Dihydro- α -quinindones Part I. amines. (2,3,4,5-Tetrahydro-4-oxo-1H-cyclopenta[c]quinolines).

By R. J. BROWN, F. W. S. CARVER, and B. L. HOLLINGSWORTH.

Substituted 2,3-dihydro- α -quinindones have been prepared by the cyclisation of the corresponding 2-oxocyclopentanecarboxyanilides in sulphuric acid. The required starting materials were obtained, together with the 2anilinocyclopent-1-enecarboxyanilides, by high-temperature condensation of arylamines with ethyl 2-oxocyclopentanecarboxylate. When ethyl p-aminobenzoate was used, the corresponding ethyl 2-anilinocyclopent-1-enecarboxylate was also isolated.

DURING another investigation, it became of interest to prepare derivatives of 2,3-dihydro- α -quinindone (2.3,4,5-tetrahydro-4-oxo-1*H*-cyclopenta[*c*]quinoline) (III). The study was, therefore, undertaken of the condensation of ethyl 2-oxocyclopentanecarboxylate with arylamines at elevated temperatures, giving the anilides (I) and 2-anilinocyclopent-1-enecarboxyanilides (II), and of the cyclisation of certain of the carboxyanilides to the corresponding 2,3-dihydro-α-quinindones (III).

Dieckmann¹ obtained an anilide of type (II) from ethyl 4-methyl-2-oxocyclopentanecarboxylate at 150° and cyclised this to compound (III; R = Me) in concentrated sulphuric acid at room temperature. Blount *et al.*² obtained the anilide (I) from the keto-ester and aniline at the b. p. and cyclised it in sulphuric acid at 100°; by condensation at room temperature they obtained the anilino-ester (IV) which cyclised to (V) at 260° within a few minutes; Linstead and Bao-Lang Wang³ isolated the third possible compound which may be formed in the condensation, namely, the anilino-anilide (II).

In the present investigation, anilides of types (I) and (II) were prepared in moderate yields by heating the reactants together for a few minutes at temperatures between 140° and 190°. Some of them have been cyclised to the 2,3-dihydro- α -quinindones (III) in sulphuric acid at 100°.

No parallel has been found for Sen and Basu's observation ⁴ of the formation of diarylureas in the condensation of ethyl 2-oxocyclohexanecarboxylate with an excess of arylamine. Condensing ethyl 2-oxocyclopentanecarboxylate with an excess of arylamine increased the yield of the anilino-anilide (II) and reduced that of the anilide (I), compared with those obtained when equimolar quantities were employed. We have been unable to cyclise the anilino-anilides under Dieckmann's conditions. We find that hydrolysis occurs

- ² Blount, Perkin, and Plant, J., 1929, 1983.
 ³ Linstead and Bao-Lang Wang, J., 1937, 807.
 ⁴ Sen and Basu, J. Indian Chem. Soc., 1929, 6, 309.

¹ Dieckmann, Ann., 1901, **317**, 91.

			õ							5																			•			÷		,	G					
	(%)	Z	6.45	6.1	5.5	5.0	- 9 v	Б. С		5.15	4·9	0.9	* I.	1.7	1:3	10.7					(%)	z	9.2			8.4	7-4	6.5	8.1		6.7	6·4	\$. \$ \$		6-65 15-2		14-1			
TABLE 1. Substituted 2-oxocyclopentanecarboxyanilides (I).	Required (%)	H	6.9	7.4	5.9	6.1	9.1 2	5-05		4·05	4 12	4.9 4	0.9 9.0	1 6	9 4 9 00	5.4					Required (%)	H	7.2		6	8.1	5.8	6.05	4.6		2.4	, L-	6.5	1	6.15 4-35	50	5.05			
	Ŗ	ပ	71-9	72.7	75-9	77.5	68.9	60-6								59.5				Ŗ	ပ	78-4			0-67	82.5	83·8	62.2		51.0	49.5	71.0	000	58.7	-	9 -09	Orange.			
		Formula	C ₁₃ H ₁₆ NO ₂	$C_{14}H_{17}NO_2$	C.,H.,NO,	C18H17NO2	C12H10NU2	$C_{12}H_{12}CINU_2$		C ₁₂ H ₁₁ Cl ₂ NO ₂	C ₁₂ H ₁₂ BrNO ₂	C13H16NO3		CIEHINO4	C., H., N.O.	$C_{13}H_{14}N_{2}O_{4}$	0°). † Yellow.			Formula	C,,H,,N,O	•		$C_{22}H_{26}N_{2}U$	CHN.O	$C_{30}H_{26}N_{2}O$	C ₁₈ H ₁₆ Cl ₂ N ₂ O		CNDHJ	C.,H.,Br,N,O	C20H22N2O3		C ₂₄ H ₂₆ N ₂ O ₅	~18++16++4~5	$C_{20}H_{20}N_4O_5$	low. ‡ Red. ¶				
	-	Z	6.45 6.5	- 6-9 9-5-9	5.7	4.9	6.2	n n n n	0 00 0 10	5.3	4·8	0.9 9	0.0 V.V	9.9	11.2	10.7	80-100%			(11).		z	9.1	9.1	0.5 0.5	8.8 4.8		6.2	8.5 0	0.2	6.7	 9	8.0 8	8. 8. 8.	9.9 12:5	15.0	13.8	† Yellow.		
	Found (%)	Н	6.9 6.9	 	- 10 9	6.2	0.6	5.7 2.1	4-9	4.0	4·3		0.0 9.9	6.0	× 4 × ∞	5.4	d (l) m		yanilides	Found (%)	H	7-4	7-4	67 G	8.7	- 10 - 10	6.1	4-5	4.4 4.2		9.0 9.0	6.4	2.9	6.1 4.3	4-4	5.2	0—100°).			
	, _	ပ	71-8 7-17	72.8	75.8	7-77	0.69	60-2 60-3	60.8 90.8	52.9	50.7	67.3	00.8 65.5	63.45	58.3	59.6	— lioht netroleum	are periode		ecarboxy	ų	ပ	78.2	78.4	0.81	1.81	82.3	83.7	62.3	62-3 69-0	6.12 8.13	49.3	70-6	70-6	68-1 58-8	58.5	9.09	a (b. p. 8		
	Vield	(%)	60 57	45 74	54 54	28	64	38 42	47	21	47	15	2 S	3 X	22	20	(h) = liof	ret(b) = lign TABLE 2. clonent-1-en	ent-1-en	Yield	(%)	24	21	15	20	16	30	27	02 8	100	15	30	20	15	10	12	petroleur			
	•	M. p.	89° 99.5	131·0132 109 191	102.5		113	50 100	119		133 - 134	139	140-150	502	155-156	150-150.5	n 60-80°) Pet(h)		TA	Substituted 2-anilinocyclopent-1-enecarboxyanilides (II).		M. p.	145°	148.5149	140	141_149	166167	237.5	153	141-5 176	104	184 - 185	162	134-134.5	163 - 164 213 - 214	265 (decomp.)		$Pet(b) = Light petroleum (b. p. 80-100^{\circ}).$		
	Solvent for	crystn.*	Pet(a) Pet(a)	MeOH-Fet(a) EtOH-H ₂ O				Pet(a) Pet(h)				EtOH	Cene-ret(D)	FIOH		-	iaht netrolenm (h	= light perforeum (b. p. 9080).	Substitute	Substitute	Substitute	Substitute	Solvent for	crystn.*	$Pet(\tilde{b})$	$-H_2O$	EtOH-H ₂ O	MeUH-Pet(a) E+OH	EtOH	C ₆ H ₆	EtOH	EtOH-H ₂ O E+OH_De+/h)	ELUA-FELUD	EtOH-H.O	EtOH -20	EtOH-H ₂ O	EtOH-Pet(b) F+OH	.	C ₆ H ₆	Light petroleum (b. p. 60-80°).
		Form	Needles Needles	Needles	Needles	Plates	Needles	Needles Needles	Plates	Needles	Needles	Needles	Drieme	Needles	Plates †	Plates †	* Det(a) - 1	- (p)12 T				Form	Needles	Needles	Plates	Needles	Plates †	Plates †	Needles	Needles	Vandlee	Needles	Needles †	Plates	Needles Needles †	Needles ‡	Needles 🛉	ight petrole		
	Subet in	aryl ring	2-Me 3-Me	4-Me 2,4-Me2	2, D-Me2 (α-Naphthalide)	4-Phenyl-	(Cyclohexylamide)	2-CI 3-CI	4-C1	2,4-Cl ₂	4-Br	4-MeO	4-HU		4-NO.	$2-Me-5-NO_2$					Subst in hoth	aryl rings	2-Me			2,4-Me2 9 5 Mo	thalide)		2-CI			8	0		4-CO ₂ Et	4-NO2		* Pet(a) = L		
		No.	- 0	ю4 и	0 0	1-	∞ 0	9 OI	11	12	13	14	01 91	21	28	19						No.	1	5	ن م	4 ×		1	6	10	12	15	14a	14	184	18	19			

to give the anilide (I), which may then be cyclised by subsequent short heating at 100° . Attempts to cyclise the anilino-anilides at 100° without prior protracted storage in sulphuric acid in the cold led to complete hydrolysis and formation of cyclopentanone.

The Experimental section describes the preparation of compounds of types (I), (II), and (III); that of compounds (IV) and their cyclisation is deferred.

Experimental

Yields are based on the consumption of ethyl 2-oxocyclopentanecarboxylate.

2-Oxocyclopentanecarboxyanilide.—Ethyl 2-oxocyclopentanecarboxylate,⁵ b. p. 108—109°/13 mm., $n_{\rm p}^{20}$ 1·44765, (0·05 mole) and aniline (0·05 mole) were mixed, heated at 189° for 5 min. after evolution of ethanol commenced, and then cooled to room temperature. The solid product was stirred under 0·1N-sodium hydroxide (50 ml.) at room temperature for 30 min., and the insoluble anilino-anilide filtered off. Neutralisation of the filtrate with acetic acid precipitated the anilide (I). It crystallised from methanol-light petroleum (b. p. 40—60°) as needles (62%), m. p. 103° (Found: C, 70·8; H, 6·2; N, 6·9. Calc. for C₁₂H₁₃NO₂: C, 70·9; H, 6·4; N, 6·9%). The alkali-insoluble product was washed thoroughly with dilute acid and water, and crystallised from aqueous alcohol. 2-Anilinocyclopent-1-enecarboxyanilide formed prisms (10%), m. p. 128—129° (Found: C, 77·5; H, 6·5; N, 10·0. Calc. for C₁₈H₁₈N₂O: C, 77·7; H, 6·5; N, 10·1%). Linstead and Bao-Lang Wang ³ give m. p. 104° for the anilide (I).

The *compounds* in Tables 1 and 2 were prepared similarly from the substituted anilines. The following notes apply:

Table 1. No. 8, the only isolable product from the reaction of cyclohexylamine. No. 15, the only isolable product from the reaction of p-aminophenol. No. 17, prepared by the protracted standing of no. 16 in cold 0.1N-sodium hydroxide.

Table 2. No. 14a, the only pure product isolated from the reaction of o-anisidine. No. 16, fractional crystallisation of the alkali-insoluble residue also gave *ethyl* 2-p-*ethoxycarbonylanilino-cyclopent*-1-*enecarboxylate*, needles [from light petroleum (b. p. 60—80°)], m. p. 67° (Found: C, 67·3; H, 6·85; N, 4·6. $C_{17}H_{21}NO_4$ requires C, 67·3; H, 6·9; N, 4·6%), in 20% yield. No. 18a, the only isolable product from the reaction of o-nitroaniline. No. 18, obtained as red needles by exhaustive extraction of the alkali-insoluble residue with boiling ethanol.

No pure products were isolated on reaction of 2-aminobiphenyl or of 3-ethoxycarbonylamino-4-methylaniline with ethyl 2-oxocyclopentanecarboxylate.

2,3-Dihydro- α -quinindone.—2-Oxocyclopentanecarboxyanilide (5 g.) was slowly added with cooling to concentrated sulphuric acid (20 ml.). When dissolution was complete, the mixture was heated on the steam bath for 15 min., then cooled and poured into water (500 ml.) the product (85%) being precipitated. 2,3-Dihydro- α -quinindone formed needles (from aqueous acetic acid), m. p. 272° (Found: C, 77.5; H, 5.7; N, 7.6. Calc. for C₁₂H₁₁NO: C, 77.7; H, 6.0; N, 7.6%). Blount, Perkin, and Plant² give m. p. 256°.

The *compounds* in Table 3 were prepared similarly. All crystallised from aqueous acetic acid. They are soluble also in pyridine and nitrobenzene but sparingly soluble in other solvents.

Substitued 2,3-dihydro- α -quinindones (III; R = H).														
	Yield Found (%)													
Subst.	Form	М. р.	(%)	С	н	Ν	Formula	С	н	Ν				
6-Me	Plates	265°	80	78·8	6.5	7.2	C ₁₃ H ₁₃ NO	78.4	6.5	7.0				
7(or 9)-Me	Needles	243244 *	87	78 .6	6.5	$7 \cdot 1$	10 10							
8-Me	Plates	309310	90	78·4	6.25	7.4								
6,8-Me ₂	Needles	292	75	78 .9	$7 \cdot 2$	6.7	$C_{14}H_{15}NO$	78 ·9	7.0	6.6				
$6,9-Me_2$	Laths	272.5 *	80	78.9	$7 \cdot 2$	6.5								
$Benzo[\bar{h}]$	Powder	338339 *	65	81.9	$5 \cdot 2$	6.3	$C_{16}H_{13}NO$	81.7	$5 \cdot 5$	6 ∙0				
6-C1	Needles	222 - 223	70	65.7	4.5	6.4	$C_{12}H_{10}CINO$	65.6	4 ·6	6·4				
7(or 9)-Cl	Needles	292293 *	75	65.7	4.6	6.3								
8-C1	Needles	306 *	75	65.4	4 ·6	6.3								
8-Br	Needles	313314 *	80	54.6	3.7	$5 \cdot 1$	C ₁₂ H ₁₀ BrNO	54.5	$3 \cdot 8$	5.3				
	* With decomp.													

TABLE 3.

⁵ Dobson, Ferns, and Perkin, J., 1909, 95, 2015.

Attempts to cyclise the nitro-, methoxy-, hydroxy-, phenyl, ethoxycarbonyl, carboxy-, and cyclohexyl derivatives of 2-oxocyclopentanecarboxyanilide with sulphuric acid proved unsuccessful.

MINISTRY OF AVIATION, EXPLOSIVES RESEARCH AND DEVELOPMENT ESTABLISHMENT, WALTHAM ABBEY, ESSEX. [Received, April 19th, 1961.]
